
(ii) Let $\mathrm{X}_{(1)}, \mathrm{X}_{(2)}, \ldots ., \mathrm{X}_{(\mathrm{n})}$ be the order statistics for a random sample of size n from the exponential distribution with p.d.f. $f(x)=\left\{\begin{array}{l}\lambda \mathrm{e}^{-\lambda \mathrm{x}} ; \mathrm{x}>0 \\ 0 ; \text { o.w. }\end{array}\right.$. Find the p.d.f. of the sample range.
3. Suppose X and Y are two iid continuous standard uniform variables. Find the joint distribution of $\operatorname{Max}(\mathrm{X}, \mathrm{Y})$ and $\operatorname{Min}(\mathrm{X}, \mathrm{Y})$. Hence find the distribution of (i) $\operatorname{Max}(\mathrm{X}, \mathrm{Y})$ (ii) Min (X, $\mathrm{Y})$. 10
4. How do you test for, and set confidence limits to, the ratio of two means of a bivariate normal distribution?

Group-B

Answer any four questions :
5. Explain the following terms :
(i) Critical Region
(ii) Level of significance $2 \frac{1 ⁄ 2}{2}+2^{1 / 2}$
6. What do you mean by standard error of a statistic? Show that in a series of independent trials with constant probability of success p , the standard error of the proportion of success is $\sqrt{\frac{\mathrm{pq}}{\mathrm{n}}}$ where $\mathrm{q}=1-\mathrm{p}$. $2+3$
7. Suppose a random sample of high school students is selected to determine if there is a difference between how long male and female students sleep at night. If m male students are randomly chosen and yield an average of k hours of sleep with a standard deviation of s_{1} and n female students with an average of l hours with standard deviation of s_{2}. Construct a $100(1-\alpha) \%$ confidence interval for the difference between the two mean hours of sleep of male vs female.
8. Suppose X and Y are two independent rectangular variables on the range 0 to θ each. Where $\theta(>0)$ is a constant. Find the distribution of $|\mathrm{X}-\mathrm{Y}|$.
9. Suppose $X_{1}, X_{2}, \ldots, X_{n}, X_{n+1}$ is a radom sample from $N\left(\mu, \sigma^{2}\right)$. Also suppose \bar{X} and S_{2} are the sample mean and sample variance of the first n sample observations. Obtain the sampling distribution of $\frac{X_{n+1}-\bar{X}}{S} \sqrt{\frac{n}{n+1}}$.
10. An urn contains 10 marbles, of which M are white and $10-\mathrm{M}$ are black. To test that M $=5$ against the alternative hypothesis that $M=6$, one draws 3 marbles from the urn without replacement. The null hypothesis is rejected if the sample contains 2 or 3 white marbles; otherwise, it is accepted. Find the size of the test and its power.

